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Abstract The Compressed Feature Matrix (CFM) is a
new molecular descriptor for adaptive similarity search-
ing. Depending on the requirements, it is based on a
distance or geometry matrix. Thus, the CFM permits
topological and three-dimensional comparisons of mole-
cules. In contrast to the common distance matrix, the
CFM is based on features instead of atoms. Each kind of
these features may be weighted separately, depending on
its (estimated) contribution to the biological effect of the
molecule. In this work, we show that the CFM allows us
to adapt similarity evaluations to particular ligands as
well as to classification requirements. The CFM method
is analyzed regarding correctness, adaptivity and speed.
Applying the basic setting of feature weights, the
similarity evaluations using the CFM on the one hand
and the Tanimoto coefficient together with MACCS Keys
on the other yield similar results. However, in contrast to
the latter method, the CFM even permits us to focus on
small parts of molecules to serve as a basis for similarity.
Accordingly, we have achieved striking results not only
by readjusting the feature weights with regard to the
scaffold but also to the side chain of the respective target.
The results of the latter run turned out to be rather
independent of the molecular scaffold. Hence, the CFM is
suitable not only for common similarity evaluation, but
also for techniques such as lead or scaffold hopping.

Electronic Supplementary Material Supplementary
material is available for this article if you access the
article at http://dx.doi.org/10.1007/s00894-002-0110-0. A
link in the frame on the left on that page takes you
directly to the supplementary material.
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Abbreviations CFM: Compressed Feature Matrix ·
HTS: high throughput screening · MCS: maximum
common substructure · col./cols: column/columns ·
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Introduction

Similarity searching is an essential task in pharmaceutical
research, especially in high throughput screening (HTS)
analysis, scaffold/lead hopping and lead structure opti-
mization. Commonly, methods used for the evaluation of
molecular similarity are divided into two main groups,
according to whether they are based on topological
features or on three-dimensional structures. Furthermore,
there are two basically different techniques for the
comparison of molecules. [1] On the one hand, some
descriptors are used to compare molecules by pairs, such
as molecular shape similarity descriptors [1, 2] and the
maximum common substructure (MCS). [1, 3] On the
other hand, there are various types of descriptors that are
calculated independently for each molecule, e.g. BCUT
descriptors, [1, 4, 5] autocorrelation descriptors [1, 6] and
substructure descriptors [1] such as hashed fingerprints,
[7] molecular holograms [8] and atom pairs. [9]

Most of the descriptors and methods mentioned focus
on different aspects of the molecules to be compared. The
large number of approaches shows that a major question
concerning similarity searching is on what basis should
molecular similarity be evaluated? In many pharmaceu-
tical applications ligands are rated similar if they exhibit
similar biological effects. Unfortunately, the 3D structure
or at least structural elements of the particular receptor are
often unknown. Then, the molecules tested are usually
compared to known active ingredients. However, in these
cases, problem-focused results can only be obtained if
those molecular features and structures that are thought to
be responsible for the effect are suitably emphasized
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(therefore, limiting the description of a molecule to its
atomic level is not sufficient in most cases). However, the
effects investigated, and thus the important features,
would normally vary according to the particular problem.
With respect to these constraints, we have developed a
novel descriptor for similarity evaluation, called the
Compressed Feature Matrix (CFM), [10, 11] that on the
one hand, describes molecules based on a user-defined set
of features and, on the other hand, permits the discrete
weighting of these features.

Regarding its structure, the CFM is closely related to
both the distance matrix [12] and the geometry matrix. [1]
However, in contrast to these, the CFM is based on
features instead of atoms, which also applies to other
similarity descriptors, e.g. the feature tree descriptor, [13]
as well as to substructure descriptors. [1, 7, 8] The CFM is
also in principle not restricted to a single set of features.
This opens up the possibility of masking atoms and
atomic groups that express negligible features. Therefore,
the CFM requires less memory space than related matrix
descriptors. Software packages such as PETRA [14]
provide various methods for the calculation of molecular
properties that might be used as features. With regard to
the procedure of comparing molecules, the CFM, to some
degree, resembles the atom-pair descriptor. However,
while the specific weighting of features is an essential
property of the CFM, the atom-pair descriptor does not
make any assumptions about the importance of different
types of functional groups or ring systems. [9]

Irrespective of the method of similarity searching used,
the resulting numerical output depends on three main
components: the representation of the molecules, the
particular weighting scheme and the selected similarity
measure. [1, 15] Different weighting schemes are reported
[16, 17, 18, 19] that refer either to the descriptors used (if
more than one are applied) or to the structural elements of
the molecules analyzed. In this work, the structure of the
CFM (i.e. the molecular representation) as well as the
appendant method of similarity evaluation (the similarity
measure), including the weighting of the structural
features, are described. We show that the CFM facilitates
similarity searching, adaptive to classification require-
ments and to the characteristics of particular sets of
ligands. As a benchmark we use the Tanimoto coefficient
applied to MACCS Keys. The latter method of similarity
searching is provided by various software packages, e.g.
MOE, [20] SUBSET [21] and ISIS/Base. [22]

Materials and methods

CFM structure

As a basis for the construction of a CFM, a feature set must be
defined that fits the requirements of the particular problem. In this
work, we refer to a set of twelve feature types: terminal carbon
atoms (cat), hydrogen donor and acceptor qualities (don, acc),
positive and negative charges (pos, neg), radicals (rad) and rings
comprising from three to eight atoms (tri, qua, pen, hex, hep, oct).

In the following, feature types are displayed in lower case letters
while particular features are upper case.

Using the feature set described, nonterminal carbon atoms do
not occur in the CFM. This is valid because the lengths of carbon
chains are considered within the distance values of the feature pairs.
Furthermore, heterocycles are not specified explicitly because they
are implicitly expressed by the feature of the respective cycle plus
the feature(s) of the heteroatom(s). An example of this is shown in
Fig. 1c, d where the chemical structure and the feature graph of
serotonine are displayed. Here, the pyrrole ring of serotonine is
represented by the features PEN (since it is a five membered ring)
and DON (which is the feature of the comprised nitrogen atom).
Within the corresponding CFM, the fact that the nitrogen atom is a
member of the ring is indicated by the distance value of zero
between the two participating features (Fig. 2b, row 1 (DON),
column 4 (PEN)).

Corresponding to its structural relationship to the distance
matrix the CFM C is defined as the concatenation

C :¼ f
D

� �
ð1Þ

where the row vector f :¼ Fkð Þnk¼1contains the features and where
D :¼ dij

� �n

i;j¼1is the respective distance or geometry matrix based
on these features. Therefore, according to the particular problem,
the matrix may be based on either topological or Euclidean
distances.

As an example, Fig. 1 shows the chemical structure (a) and the
feature graph (b) of dopamine. Its CFM is shown in Fig. 2a.

Fig. 1 Chemical structures (a) and (c) and feature graphs (b) and
(d) of dopamine and serotonine

Fig. 2 The topological CFMs of dopamine (a) and serotonine (b)

67



Similarity evaluation

Since similarity evaluation is performed by the comparison of
CFMs, two molecules are considered identical if their CFMs are
identical, irrespective of whether they comprise the same atoms and
atomic groups. In contrast, different kinds and numbers of features
as well as varying topologies diminish the degree of similarity. The
question that this section deals with is in what way and to what
extent do the differences between two CFMs influence the degree
of similarity between two molecules? As an example, the succes-
sive steps of the similarity evaluation between dopamine and
serotonine are represented. At first, both CFMs are split into
submatrices. In this context, a submatrix holds the distances
between all members of two particular kinds of features, e.g. don/
don or cat/hex. Figure 3 shows the submatrices of dopamine (a) and
serotonine (b).

Subsequently, the entries of corresponding submatrices are
linearly aligned in such a way that the sum of the deviations
between the entries is minimal. Since the CFM is a symmetric
matrix, only the upper triangular matrix is considered. The
submatrix alignment of dopamine and serotonine is given in
Table 1.

Obviously, there are some corresponding entries in both ligands
while some other entries have no counterpart. In the following, the
effects of these interrelations are described in the context of
similarity evaluation.

Each matrix entry e of a CFM stands for a substructure that
comprises two features connected by a chain of a certain length.
Aligned entries stand for similar substructures (that comprise the
same features) within both molecules. As a rule, the more
corresponding entries that occur in the submatrix alignment and
the smaller the respective deviations are, the more similar are the
molecules compared. Since the importance of the different kinds of
features depends on the particular problem, the contribution of
matching substructures to molecular similarity is extended by the
product of the discrete weighting factors w of both features. Thus,

the similarity s+ between two molecules M and M’ is at first defined
as

sþ ¼
Xn

i¼1

wx � wy

eM
i � eM0

i

� �2þ1
ð2Þ

Here, n is the number of corresponding entries in M and M’, wx and
wy are the weights of the feature types x and y defining the
particular submatrices and eM and eM’ are the aligned entry values
within these submatrices.

To achieve a higher emphasis on the occurrence of matching
substructures than on the deviations, one may alternatively use the
absolute deviation instead of its square:

sþ ¼
Xn

i¼1

wx � wy

eM
i � eM0

i

�� ��þ 1
ð3Þ

In contrast to the set of corresponding substructures, there are some
entries that lack a counterpart in the other molecule. These features
decrease the degree of similarity. Therefore, their respective
weights v are summed up to the penalty term s�,

s� ¼
Xm

j¼1

vz
j ð4Þ

Here, m is the number of unpaired features and vz is the penalty
weight of the respective feature type z. In most cases, the values of
the weighting factors w and v would be different for the same kind
of feature, because the presence of a certain kind of feature might
be more meaningful to receptor binding than its absence, and vice
versa.

The overall similarity s between two molecules is then
expressed as

s ¼ sþ � s� ð5Þ
Because of its structure and the algorithm of similarity evaluation,
the CFM does not depend on any kind of numbering and it is
invariant against translation, rotation and the center of gravity.

As an example, dopamine and serotonine are compared using
the following set of weighting factors w/v : don: 5/0, pos: 5/0, pen:
2/0, hex: 10/0. With these values the similarity between dopamine
and serotonine equals 5+12.5+25+50+50+25–0=167.5 (using
Eq. (2) for the calculation of s+). While a single scalar is not
meaningful by itself, a target-specific scale is defined. Thereby, the
upper limit of the scale is determined by comparing the target to
itself. The resulting value stands for identical CFMs and thus for
100% similarity. In general, the similarity of any tested molecule to
a known ligand is equal to or less than 100%. However, since the
comparison results consist of positive and negative terms, similarity
values less than zero might occur. Therefore, the results are
normalized to the open interval �1; 100� �.

The similarity of dopamine (which serves as the target in this
example) to itself is 25+25+25+50+50+50=225. Accordingly, the
normalized similarity (normS) between dopamine and serotonine is
74.4. Hereby, emphasis was placed on the occurrence of the feature
types hex, pos and don, assuming that these features are essential
for receptor binding. Obviously, other values of w and v might
cause totally different results.

A similarity evaluation based on only two molecules has little
significance, particularly since it may be influenced arbitrarily. In
fact, the advantage of our method becomes evident on the
evaluation of large data sets. Used in this way, the result of a

Fig. 3 The topological submatrices of the CFMs of dopamine (a)
and serotonine (b)

Table 1 Submatrix alignment
of dopamine and serotonine

Feature types don,don don,pos don,pen don,hex pos,pen pos,hex pen,hex

Dopamine 3 6 7 – – 1 1 – 3 –
Serotonine 5 5 7 0 3 1 1 3 4 0
|eM�eḾ’|a 2 1 0 – – 0 0 – 1 –

aThe term |eM�eḾ’| specifies the deviation between corresponding submatrix entries of the two
molecules M and M’
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similarity search is a list of the database molecules ordered
according to their likeness to the target structure.

The procedure of similarity evaluation is conducted in two steps.
At first, a target structure is determined, and the weighting factors
w and v are adjusted manually, normally with regard to those
features that are (thought to be) responsible for its biological effects
as e.g. receptor binding or toxicity. Furthermore, other problem-
specific classification requirements (charge, hydrophobicity, size
etc.) may affect the weighting of the features. As a rule, important
feature types are assigned values larger than one, while unfavorable
features may be penalized by negative values. In the second step, a
query database is searched for the target with these weighting
factors applied. Such a run is successful if those structures are
ranked highest that are most similar to the target structure, referring
to the particular problem. This may be verified by adding known
active ingredients to the database that are similar to the target
regarding structural and binding properties. If these control
structures are classified as expected, other high ranking compounds
may be suitable for further chemical and pharmaceutical investi-
gation. If not, the feature weights are readjusted for another search.

Similarity searching with CFMs is based on the optimal
alignment of corresponding submatrices. The more local similar-
ities that occur between the two molecules to be compared, the
higher the positive similarity term s+. If the submatrices of the two
compounds are of about equal size, the matching entries (and thus
the value of s+) clearly result from a high global similarity.
However, large database molecules may comprise submatrices that
contain significantly more entries than the corresponding subma-
trices of the target. In these cases, high values of s+ may be
achieved even if the global analogy of the ligands compared is
comparatively low. One way to solve this problem of potential
"false positives" is to determine negative feature weights for
unfavorable features (see earlier). In addition to this, the similarity
results of those compounds that comprise more features than the
target structure may optionally be standardized to the number of
features of the latter. The resulting similarity value �ss is defined as

�ss ¼ s � Fj jT

Fj jD
ð6Þ

where |F|T and |F|D are the numbers of features occurring in the
target and in the database molecule, respectively.

Software

The concept of the CFM is realized by the software COFEA
(Compressed Feature Matrix) which is implemented in Java 2, JDK
version 1.30. Since Java is a platform-independent programming
language, the software runs under different operating systems.

COFEA provides two main independent program modules. The
first one parses MDL Mol files [23, 24] and transforms them into
CFM files, storing the molecules as Compressed Feature Matrices.
This is especially significant for large amounts of data because the
CFM data format takes about ten times less storage capacity than
the MDL Mol file format. The second program module performs
the similarity search, using CFM files as its input data format.
There are several ways to influence the searching process. As
mentioned earlier, the most important parameters are the feature
weights assigned to atoms and atomic groups. Furthermore, the
similarity values of compounds that comprise more features than
the target structure may optionally be standardized to the size (i.e.
the number of features) of the target. Both of these properties
directly affect the quality of similarity evaluation. In addition to
these, there are other parameters regarding computing time and
storage requirements. Thus, COFEA permits the determination
upper and lower limits for the number of each kind of feature to
occur in the database molecules, i.e. the maximum and minimum
allowed number of elements per feature group. If a database
molecule does not fit these specifications, it will be precluded from
further consideration. The effect of this kind of preselection on

computing time was determined using a Windows-based computer
with 384 MB RAM and an 850 MHz CPU.

Data sets

In this work, the software COFEA and with it the concept of the
CFM are analyzed regarding correctness, adaptivity (including the
handling of database molecules that are larger than the target
ligand) and speed. Therefore, we used three data sets that represent
different subsets of two reference databases. The first reference
database contains 72 available MAO-A inhibitors, the second one
comprises 8,655 active ingredients of different activity classes.
(Both databases were composed by Michael Bieler.) The basis for
the latter was a data set supplied by Tocris Cookson Ltd [25] that
comprises 826 biologically active ligands, classified into 112
activity classes (regarding the different (sub-) types of the
respective receptors). This database was enlarged to its final size
by adding structures from literature data and commercial databases.
The new compounds were selected on the basis of 2D Unity
fingerprints [26] with the SYBYL tool SELECTOR, [27] using
various ligands of different activity classes as targets. The
precondition for the selection of a new database entry was a
minimum Tanimoto coefficient of 0.8. The three test data sets that
were used for the evaluation of the CFM were selected as follows.

Fig. 4 The group of five MAO-A inhibitors (G1_L26) comprising
the same scaffold as L26
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Test data set A serves as a basis for the evaluation of adaptivity.
It contains the whole database of MAO-A inhibitors, as well as 488
non-MAO-A inhibitors with molecular weights between 75 and
295. The two targets that are used in this context are the MAO-A
inhibitors L26 (MW=299) and L45 (MW=333), each of them
representing a group of five and nine MAO-A inhibitors (G1_L26
and G2_L45), respectively (Figs. 4 and 5). The elements of each of
these groups have particular cyclic scaffolds in common, yet with
different side chains.

To illustrate the handling of molecules that are larger than the
respective target, 300 compounds between 300 and 500 Da plus the
72 MAO-A inhibitors were combined in test data set L. In this
context, the size of a molecule concerns the number of its features
|F|. Finally, test data set S is used for the evaluation of computing
time. It represents a subset of 8,460 compounds selected from the
second reference database. The molecular weights of these
structures range from 33 to 800. The SDfiles of the three test data
sets described are available in the supplementary material.

Results

Adaptivity

At first, the adaptivity of the CFM-based algorithm of
similarity searching was evaluated. Therefore, the MAO-
A inhibitor L26 was compared to test data set A three
times, each time with another sense of similarity and thus
using different sets of weighting factors. In the first run,
the positive weighting factors wf were 1 and the negative
weighting factors vf were zero for all feature types. In this
basic setting, all features are assumed to be equally
important, which means that the search is performed
without any problem specifications and without penalty
terms (s=s+). In the following, only those weighting
parameters will be specified that differ from their basic

values. The second set of weights was adjusted with the
objective of finding structures containing the same (or at
least similar) cyclic scaffold as the target L26. The
scaffold is composed of the features types acc, pen and
hex, and accordingly the weights of these features were
adjusted. However, while the feature types pen and hex
only occur in the scaffold, acc is the main feature type of
the side chain. Therefore, emphasis was especially placed
on pen and hex, setting the feature weights as follows:
wacc=2; wpen=10; whex=10. In the third run, test data set A
was searched for compounds similar to the inhibitor L26,
especially concerning its side chain. The latter is, on the
one hand, predominantly composed of hydrogen bond
acceptors, on the other hand, it is connected to the
scaffold by the feature type hex. Accordingly, the
weighting factors for acc and hex were readjusted
(wacc=10; whex=5). For each of these runs, the 50 high-
scoring compounds are shown in Table 2 (cols.2–4). The
complete results can be seen in the supplementary
material. Finally, as a benchmark, the search was
performed using MACCS Keys as the molecular finger-
prints and the Tanimoto coefficient as the similarity
metric (Table 2, col. 1; supplementary material). For this
run, we used the software program MOE. [20]

With the latter method, 28 of a total of 72 MAO-A
inhibitors are found within the first 50 compounds of test
data set A (Table 2, col. 1). A similar result is achieved
using the CFM-based searching method with the basic
setting of weighting factors. Here, 31 of the 50 high
scoring structures are MAO-A inhibitors (Table 2, col. 2).
The readjustment of the feature weights towards the
cyclic backbone of target L26 yields a totally different
result (Table 2, col. 3). Only the five inhibitors that

Fig. 5 The group of nine MAO-
A inhibitors (G2_L45) com-
prising the same scaffold as L45
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contain the same scaffold as the target (i.e. the members
of G1_L26) are found at the very top of the ranking. They
are closely followed by 8 (of 10) other compounds of test
data set A that comprise identical ring systems (with
differently positioned hydrogen bond acceptors). Finally,
emphasis was placed on the side chain of the ligand L26.
Test data set A contains thirteen MAO-A inhibitors with
the same/similar side chains, which are all grouped at the
top of the respective ranking. In addition, five non-MAO-

A inhibitors that contain related side chains were
detected. Although it was not the primary goal of the
last two runs to find as many MAO-A inhibitors as
possible, there were 30 and 26 hits, respectively, within
the 50 high-scoring compounds.

The test described above was rerun, this time with the
MAO-A inhibitor L45 as the target structure. The results
and the weighting parameters determined are shown in
Table 3 and in the supplementary material.

Table 2 Results of four different similarity evaluations of target L26 within test data set ’A’. The compounds that fit the problem
specifications are bold face

Searching
method
Focus

Tanimoto
MACCS Keys
None

CFM
wf=1; vf=0
None

CFM
wacc=2; wpen=10; whex=10
Scaffold

CFM
wacc=10; whex=5
Side chain

No. Name s Name normS Name normS Name normS

1 M_Inh_L26 100.0 M_Inh_L26 100.0 M_Inh_L26 100.0 M_Inh_L26 100.0
2 M_Inh_L25 90.9 M_Inh_L25 100.0 M_Inh_L27 100.0 M_Inh_L25 100.0
3 M_Inh_L27 86.2 M_Inh_L27 100.0 M_Inh_L28 100.0 M_Inh_L27 100.0
4 M_Inh_L28 80.7 M_Inh_L28 100.0 M_Inh_L25 100.0 M_Inh_L28 100.0
5 M_Inh_L24 73.4 M_Inh_L10 80.4 M_Inh_L24 78.4 M_Inh_L10 87.3
6 M_Inh_L42 70.3 M_Inh_L42 68.2 SOL_1849 74.9 M_Inh_L42 71.3
7 M_Inh_L43 70.3 M_Inh_T9 68.2 SOL_1353 70.1 M_Inh_T9 71.3
8 M_Inh_L48 69.8 M_Inh_L43 64.4 SOL_1472 68.9 M_Inh_L43 67.4
9 SOL_1353 69.8 M_Inh_L44 62.8 SOL_986 67.8 M_Inh_L48 64.7

10 M_Inh_T3 67.2 M_Inh_L48 62.8 SOL_1363 66.2 M_Inh_L44 64.7
11 M_Inh_T9 67.2 SOL_1849 61.3 SOL_1969 65.9 M_Inh_L45 60.7
12 M_Inh_L13 66.2 SOL_1363 60.4 M_Inh_L53 64.6 M_Inh_L47 60.7
13 M_Inh_L9 66.2 M_Inh_L24 58.4 SOL_1219 62.4 M_Inh_T8 59.5
14 SOL_849 64.9 M_Inh_T5 58.2 M_Inh_L9 62.2 SOL_1849 59.0
15 M_Inh_L10 64.2 M_Inh_L47 55.3 M_Inh_T13 62.1 M_Inh_T5 58.2
16 M_Inh_L49 62.5 M_Inh_L45 55.3 SOL_1184 62.1 SOL_1363 56.6
17 M_Inh_L44 62.1 M_Inh_L53 55.0 SOL_1522 61.7 M_Inh_L46 52.7
18 M_Inh_T2 61.8 M_Inh_L49 54.9 SOL_2084 61.4 M_Inh_L49 52.7
19 M_Inh_L11 61.5 M_Inh_L46 54.9 SOL_1850 61.0 SOL_1844 52.7
20 M_Inh_L12 61.5 M_Inh_L9 54.6 M_Inh_L11 60.7 SOL_1349 52.6
21 M_Inh_L46 60.6 M_Inh_T8 54.5 M_Inh_L13 60.3 M_Inh_L11 52.4
22 M_Inh_L8 60.6 M_Inh_L11 54.3 SOL_711 59.7 M_Inh_L9 52.2
23 SOL_1566 58.6 M_Inh_T13 52.8 M_Inh_T12 59.2 SOL_1729 51.2
24 SOL_1883 58.2 SOL_1850 52.4 M_Inh_L42 58.5 SOL_1850 50.5
25 M_Inh_L41 56.7 M_Inh_L13 52.3 SOL_753 58.5 SOL_1825 49.4
26 M_Inh_T10 56.5 SOL_1844 52.3 M_Inh_T9 58.5 M_Inh_L13 49.3
27 SOL_1522 55.9 SOL_1349 50.9 M_Inh_L10 58.2 SOL_1754 48.1
28 M_Inh_L30 55.7 SOL_1729 50.4 M_Inh_T10 58.2 SOL_1135 47.5
29 SOL_522 55.7 SOL_1284 49.2 M_Inh_T5 58.1 SOL_862 47.5
30 M_Inh_T11 55.2 SOL_753 49.0 SOL_1935 58.0 M_Inh_L24 47.4
31 SOL_1082 55.0 SOL_1935 48.3 SOL_1448 57.6 SOL_753 46.6
32 M_Inh_T5 54.8 M_Inh_T10 48.1 SOL_1902 57.5 M_Inh_L53 46.0
33 SOL_2082 54.6 SOL_1472 47.3 M_Inh_L8 56.5 SOL_1456 45.3
34 SOL_1097 53.6 SOL_1969 47.3 M_Inh_L12 56.5 M_Inh_T13 44.9
35 M_Inh_L40 52.9 SOL_1825 46.7 M_Inh_T3 56.5 SOL_1958 44.3
36 M_Inh_L50 52.9 SOL_1353 46.7 M_Inh_T2 56.5 SOL_1935 44.0
37 SOL_814 52.5 SOL_1456 46.3 M_Inh_L46 56.3 SOL_1284 43.7
38 M_Inh_L38 52.4 M_Inh_L19 46.3 M_Inh_L49 56.3 SOL_1764 43.3
39 SOL_1334 52.2 M_Inh_L52 46.3 M_Inh_L43 56.2 SOL_1519 43.2
40 SOL_1829 52.2 SOL_1829 46.2 SOL_1284 56.0 SOL_1656 43.2
41 SOL_1877 51.6 SOL_1322 46.0 M_Inh_L44 55.3 M_Inh_T10 42.9
42 SOL_1740 51.3 SOL_862 45.4 M_Inh_L48 55.3 SOL_2082 42.8
43 SOL_2066 51.3 SOL_1135 45.4 M_Inh_L54 55.0 SOL_1485 42.1
44 SOL_1519 50.9 M_Inh_L41 45.3 M_Inh_L41 54.8 SOL_1322 41.6
45 SOL_1006 50.9 SOL_1902 45.2 SOL_1391 54.2 SOL_1403 41.4
46 SOL_1590 50.9 M_Inh_L8 45.1 M_Inh_L19 53.8 M_Inh_L41 41.3
47 SOL_1018 50.8 M_Inh_L12 45.1 M_Inh_L52 53.8 SOL_1433 41.3
48 SOL_1181 50.0 M_Inh_T3 45.1 M_Inh_L59 53.7 SOL_1472 41.0
49 SOL_1427 50.0 M_Inh_T2 45.1 SOL_2067 53.2 M_Inh_T3 40.9
50 SOL_1764 50.0 M_Inh_T12 44.9 SOL_2020 53.0 M_Inh_T2 40.9
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Using the Tanimoto coefficient with MACCS Keys, 22
MAO-A inhibitors are found within the 50 database
molecules that are most similar to the target (Table 3, col.
1). Thereby, the two groups G2_L45 (ranks 1 to 9) and
G1_L26 (ranks 18 to 22) are separated according to their
different scaffolds. In contrast to this, the CFM-based
method with the basic weightings is predominantly
influenced by hydrogen bond acceptors. This is because

seven of the eleven comprised features of L45 are of the
type acc. The ranking of the 50 high-scoring compounds
contains 25 MAO-A inhibitors (Table 3, col. 2). Turning
the focus to the scaffold of target L45, the nine members
of group G2_L45 are ranked highest. The only six non-
MAO-A inhibitors of test data set A that contain the same
cyclic scaffold as the target structure are found between
ranks 10 and 24 (Table 3, col. 3). Regarding the side chain

Table 3 The results of four different similarity evaluations of target L45 within test data set ’A’. The compounds that fit the problem
specifications are bold face

Searching
method
Focus

Tanimoto
MACCS Keys
None

CFM
wf=1; vf=0
None

CFM
whex=10
Scaffold

CFM
wacc=10; whex=5
Side chain

No. Name s Name normS Name normS Name normS

1 M_Inh_L45 100.0 M_Inh_L45 100.0 M_Inh_L45 100.0 M_Inh_L45 100.0
2 M_Inh_T8 95.4 M_Inh_L47 81.8 M_Inh_L47 93.5 M_Inh_L47 97.4
3 M_Inh_L47 91.3 M_Inh_T8 80.9 M_Inh_T8 93.4 M_Inh_T8 95.9
4 M_Inh_L34 86.4 SOL_1849 65.9 M_Inh_L34 77.8 M_Inh_L28 65.5
5 M_Inh_L35 86.4 SOL_2082 60.7 M_Inh_L14 72.9 M_Inh_L27 65.5
6 M_Inh_L14 82.2 M_Inh_L28 59.7 M_Inh_L35 72.9 SOL_1349 64.8
7 M_Inh_L37 80.0 M_Inh_L27 59.7 M_Inh_L37 72.9 M_Inh_L42 63.5
8 M_Inh_L33 71.2 SOL_1349 58.1 M_Inh_L31 69.2 M_Inh_T9 63.5
9 M_Inh_L31 69.8 SOL_1850 56.7 M_Inh_L33 69.2 SOL_1849 63.5

10 M_Inh_L23 62.1 SOL_1709 53.2 SOL_1201 69.1 SOL_1844 60.6
11 SOL_836 53.1 M_Inh_L42 53.1 SOL_2082 68.1 SOL_1825 59.5
12 SOL_1439 48.1 M_Inh_T9 53.1 SOL_1320 68.0 SOL_2082 56.5
13 SOL_2085 47.4 SOL_1882 50.9 SOL_1697 67.9 SOL_1273 56.3
14 SOL_934 45.9 SOL_1273 50.9 SOL_1243 66.9 SOL_1882 56.3
15 SOL_1729 42.3 SOL_1433 49.0 SOL_1145 66.2 SOL_1363 55.4
16 SOL_1273 41.5 SOL_1764 48.5 SOL_1967 64.0 M_Inh_L43 55.3
17 SOL_1462 40.9 SOL_1472 48.5 SOL_1903 63.6 M_Inh_L10 54.1
18 M_Inh_L25 40.0 M_Inh_L11 48.0 SOL_1709 63.4 M_Inh_T5 53.9
19 M_Inh_L26 38.8 SOL_1729 48.0 SOL_1609 62.7 M_Inh_L48 53.9
20 M_Inh_L27 38.4 M_Inh_T10 48.0 SOL_1472 61.2 M_Inh_L44 53.9
21 SOL_1419 38.2 M_Inh_L23 47.3 SOL_925 60.4 M_Inh_L25 53.3
22 M_Inh_L28 38.2 M_Inh_T13 47.3 SOL_1391 60.2 M_Inh_L26 53.3
23 SOL_1201 38.0 M_Inh_L49 47.2 M_Inh_L61 60.0 SOL_1729 52.6
24 SOL_1156 37.7 M_Inh_L46 47.2 SOL_607 58.1 SOL_1850 52.1
25 SOL_2082 37.7 M_Inh_L44 46.2 SOL_800 58.1 SOL_1456 52.1
26 SOL_1135 37.5 M_Inh_L48 46.2 SOL_1489 57.9 M_Inh_L46 51.1
27 SOL_1387 37.5 SOL_753 45.7 SOL_1082 57.7 M_Inh_L49 51.1
28 SOL_1991 37.0 M_Inh_L26 45.2 SOL_1796 57.1 SOL_1433 49.6
29 SOL_1814 36.9 M_Inh_L25 45.2 SOL_1548 54.6 SOL_1709 49.3
30 SOL_1825 36.8 SOL_1485 44.4 SOL_1960 54.1 SOL_1322 48.9
31 SOL_862 36.8 M_Inh_L10 44.2 SOL_1259 53.9 M_Inh_L11 48.0
32 SOL_1815 36.4 SOL_1363 44.0 SOL_1522 53.5 M_Inh_T13 47.1
33 SOL_1882 36.0 M_Inh_T5 43.5 SOL_1265 53.3 SOL_1656 45.6
34 SOL_1958 35.4 SOL_1697 43.1 SOL_1301 53.2 SOL_753 44.5
35 SOL_1693 35.0 SOL_1825 42.7 SOL_2026 53.1 SOL_1485 44.5
36 M_Inh_L42 34.2 M_Inh_L8 42.5 SOL_1184 52.7 SOL_862 44.4
37 M_Inh_L3 33.9 SOL_1844 42.4 SOL_694 52.4 SOL_1135 44.4
38 M_Inh_L46 33.8 SOL_1944 42.4 SOL_1866 52.2 SOL_1958 44.4
39 M_Inh_L24 33.3 SOL_1958 42.4 SOL_1580 49.7 SOL_1764 44.3
40 M_Inh_T9 32.9 SOL_1829 42.2 SOL_852 47.9 SOL_1472 44.2
41 M_Inh_L43 32.5 SOL_1935 42.2 M_Inh_L27 47.8 M_Inh_L13 44.0
42 SOL_1170 32.4 M_Inh_L19 42.2 M_Inh_L28 47.8 SOL_953 43.8
43 SOL_848 31.3 M_Inh_L34 41.7 SOL_1849 47.6 SOL_1793 43.7
44 SOL_991 31.3 SOL_1145 41.3 SOL_874 46.8 M_Inh_L9 43.6
45 M_Inh_L49 31.1 M_Inh_L9 41.2 SOL_1126 46.7 M_Inh_L53 43.0
46 M_Inh_T13 31.0 M_Inh_L13 40.6 SOL_878 46.7 M_Inh_T10 42.5
47 SOL_953 31.0 M_Inh_L43 40.5 SOL_1398 46.5 SOL_1235 41.9
48 SOL_1559 30.9 SOL_1322 40.5 M_Inh_T13 46.3 M_Inh_L24 41.7
49 SOL_715 30.9 SOL_508 40.5 SOL_600 45.1 M_Inh_L19 41.6
50 SOL_1414 30.8 SOL_1489 40.2 M_Inh_L53 44.8 M_Inh_L52 41.3
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of L45, the 13 expected MAO-A inhibitors plus one of the
similar non-MAO-A inhibitors are found between ranks 1
and 22 (Table 3, col. 4). In the last two runs, the numbers
of high scoring MAO-A inhibitors were 14 and 25,
respectively.

In those runs performed with the basic settings of
weighting parameters, the resulting rankings reflect the
similarity between the target structure and the database
molecules, evenly regarding the whole compounds. To
turn one’s attention to a specific part of the target
structure requires readjustment of the weighting factors
according to the appropriate problem specification. As an
example, Table 4 displays the alterations that arise in the
searching results of target L45 when emphasis is succes-
sively placed on its scaffold. For this purpose, four
different values of the weighting factor whex (1, 4, 7 and
10) are taken into consideration.

At each step, the contribution of the hydrogen bond
acceptors decreases, while the influence of the ring
system increases. This effect not only accounts for the
MAO-A inhibitors, but also for other compounds that
show a similar scaffold. Accordingly, the overall number
of high scoring MAO-A inhibitors must decrease, because
only the members of the group G2_L45 have the scaffold
specified. Accordingly, raising the value of whex beyond
10 results in an even larger distance between the G2_L45
group and the other MAO-A inhibitors.

Large database compounds

In this section, the effects of the negative feature weights,
as well as of standardizing the similarity values of large
database molecules to the size of the target, are shown for
the MAO-A inhibitor L45 using test data set L as a
reference. The results of three different runs are com-
pared. For the first, the weighting parameters are adjusted
with regard to the scaffold of the inhibitor L45. According
to the composition of the reference data set, the weights
(wacc=2; whex=10) reflect the structure of the target more
distinctly than was necessary in the previous section. In
the second run, compounds with more or less than three
six-membered rings are penalized by adding the negative
weighting factor vhex=-80. Finally, the similarity values of
the larger compounds were standardized to the size of the
target. The complete results of each run are given in the
supplementary material. Table 5 shows the rankings of
the 20 high-scoring compounds.

In all these examples, the nine members of group
G2_L45 are found within the ranges shown. This is also
(rather exclusively) true for the only four non-MAO-A
inhibitors that comprise the queried cyclic backbone.
Thus, the three results differ mainly in the sequence of the
13 compounds (whereby the best agglomeration is
achieved using the standardization method). Therefore,
it remains up to the user which method he would estimate
to be most suitable for the particular problem specifica-
tion.

Table 4 The alterations of the
searching results of target L45
with changing feature weights.
The compounds that fit the
problem specifications are bold
face

No. CFM
whex=1

CFM
whex=4

CFM
whex=7

CFM
whex=10

Name (normS) Name (normS) Name (normS) Name (normS)

1 M_Inh_L45 100.0 M_Inh_L45 100.0 M_Inh_L45 100.0 M_Inh_L45 100.0
2 M_Inh_L47 81.8 M_Inh_L47 89.0 M_Inh_L47 91.8 M_Inh_L47 93.5
3 M_Inh_T8 80.9 M_Inh_T8 88.7 M_Inh_T8 91.7 M_Inh_T8 93.4
4 SOL_1849 65.9 SOL_2082 64.9 M_Inh_L34 72.4 M_Inh_L34 77.8
5 SOL_2082 60.7 M_Inh_L34 63.1 SOL_2082 66.9 M_Inh_L35 72.9
6 M_Inh_L28 59.7 SOL_1709 60.2 M_Inh_L37 66.5 M_Inh_L14 72.9
7 M_Inh_L27 59.7 SOL_1697 57.7 M_Inh_L35 66.5 M_Inh_L37 72.9
8 SOL_1349 58.1 SOL_1472 56.8 M_Inh_L14 66.5 M_Inh_L31 69.2
9 SOL_1850 56.7 SOL_1849 55.9 SOL_1697 64.1 M_Inh_L33 69.2

10 SOL_1709 53.2 M_Inh_L35 55.8 SOL_1709 62.3 SOL_1201 69.1
11 M_Inh_L42 53.1 M_Inh_L37 55.8 SOL_1145 62.1 SOL_2082 68.1
12 M_Inh_T9 53.1 M_Inh_L14 55.8 M_Inh_L31 62.1 SOL_1320 68.0
13 SOL_1882 50.9 SOL_1145 55.5 M_Inh_L33 62.1 SOL_1697 67.9
14 SOL_1273 50.9 M_Inh_L28 54.8 SOL_1201 62.0 SOL_1243 66.9
15 SOL_1433 49.0 M_Inh_L27 54.8 SOL_1320 60.8 SOL_1145 66.2
16 SOL_1764 48.5 SOL_1967 52.4 SOL_1472 59.7 SOL_1967 64.0
17 SOL_1472 48.5 M_Inh_L33 50.6 SOL_1967 59.6 SOL_1903 63.6
18 M_Inh_L11 48.0 M_Inh_L31 50.6 SOL_1243 59.5 SOL_1709 63.4
19 SOL_1729 48.0 SOL_1489 50.3 M_Inh_L61 56.3 SOL_1609 62.7
20 M_Inh_T10 48.0 SOL_1201 50.3 SOL_1903 55.4 SOL_1472 61.2
21 M_Inh_L23 47.3 M_Inh_L61 49.6 SOL_1489 55.1 SOL_925 60.4
22 M_Inh_T13 47.3 M_Inh_T13 49.4 SOL_1391 54.7 SOL_1391 60.2
23 M_Inh_L49 47.2 SOL_1320 49.3 SOL_1609 54.3 M_Inh_L61 60.0
24 M_Inh_L46 47.2 SOL_1850 49.2 SOL_1082 51.9 SOL_607 58.1
25 M_Inh_L44 46.2 SOL_1243 47.7 SOL_925 51.7 SOL_800 58.1
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Speed

Besides correctness and adaptivity, COFEA was analyzed
regarding computing time. Therefore, we used a data set
containing 8,460 compounds with molecular weights
from 33 to 800, as well as the MAO-A inhibitor L35
(Fig. 5, center) as a target structure. Since the duration of
similarity searching significantly depends on the number
of compounds evaluated, the effect of precluding unsuit-
able molecules prior to the actual search was quantified.
Therefore, the search was performed with five different
restriction patterns. The results are shown in Table 6. All

of the patterns are symmetrical, i.e. the allowed positive
and negative deviations are the same for all feature types.
However, any kind of pattern may be used according to
the particular problem.

An extrapolation of the searching time required for the
whole data set (no preselection; Table 6, first pattern)
yields an estimated value of less than 85 s per 100,000
molecules. The more stringent the restriction patterns, the
lower are the average calculation times.

Discussion

The CFM was introduced as a novel feature-based
descriptor that enables problem-specific similarity eval-
uation. For testing our method, we used the Tanimoto
coefficient together with MACCS Keys as a benchmark.
The analysis described showed that the two approaches
yield similar results if the basic settings of weighting
factors are applied to the CFM. In addition, we obtained
striking results concerning the adaptivity of similarity
evaluation. The specific weighting of the features even
allows us to focus on small particular structures that are
independent of the molecular scaffold. This characteristic
makes the CFM suitable for techniques such as scaffold or
lead hopping.

Concerning computing time, the CFM-based similarity
search proved to be suitably fast for interactive use. In
combination with adequate restriction patterns, the
searching speed as well as the specificity of the results
may be increased.

Table 5 The effects of negative feature weights and of standardizing the similarity values of large database molecules. The compounds
that fit the problem specifications are bold face

Searching method
Standardization

CFM
wacc=2; whex=20
none

CFM
wacc=2; whex=20; vhex=�80
none

CFM
wacc=2; whex=20; vhex=�80
s � Fj jL45� Fj jDa

No. Name normS Name normS Name norm S
–

1 M_InhL45 100.0 M_Inh_L45 100.0 M_Inh_L45 100.0
2 M_Inh_L47 96.1 M_Inh_L47 96.1 M_Inh_L47 96.1
3 M_Inh_T8 96.0 M_Inh_T8 96.0 M_Inh_T8 96.0
4 SOL_4509 94.9 SOL_4130 92.8 M_Inh_L34 86.5
5 SOL_4130 92.8 SOL_4509 90.3 M_Inh_L35 83.4
6 SOL_6552 91.2 SOL_4881 88.6 M_Inh_L37 83.4
7 SOL_3251 91.1 M_Inh_L34 86.5 M_Inh_L14 83.4
8 SOL_4881 88.6 SOL_3251 86.4 M_Inh_L33 81.0
9 M_Inh_L34 86.5 SOL_6734 84.4 M_Inh_L31 81.0

10 SOL_2820 85.0 M_Inh_L37 83.4 SOL_2820 80.3
11 SOL_6734 84.4 M_Inh_L14 83.4 SOL_4130 78.5
12 SOL_7061 83.6 M_Inh_L35 83.4 SOL_4509 76.4
13 M_Inh_L14 83.4 SOL_6552 81.9 SOL_3135 73.7
14 M_Inh_L35 83.4 M_Inh_L33 81.0 SOL_3251 73.1
15 M_Inh_L37 83.4 M_Inh_L31 81.0 SOL_2691 72.4
16 SOL_3645 82.0 SOL_2820 80.3 SOL_3645 70.8
17 SOL_4769 81.4 SOL_2639 80.1 SOL_2376 70.6
18 M_Inh_L33 81.0 SOL_7061 79.0 SOL_3338 70.5
19 M_Inh_L31 81.0 SOL_3645 77.3 SOL_4769 70.3
20 SOL_2639 80.1 SOL_4769 76.7 SOL_3632 69.9

a|F|L45 and |F|D are the numbers of features occurring in the target and in the database molecule, respectively

Table 6 Computation times and numbers of evaluated molecules
resulting from different restriction patterns

Restriction patterna Time (ms) Number of eval.
molecules

Fj jL35
fi
�1 7060 8460

Fj jL35
fi
�4 4938 6958

Fj jL35
fi
�3 3836 5870

Fj jL35
fi
�2 2343 3860

Fj jL35
fi
�1 891 1449

a Fj jL35
fi

(with i=0 ... n) is the number of features |F| of type fi
occurring in the target L35; n is the number of different feature
types of the predefined feature set. The restriction pattern Fj jL35

fi
�x

precludes all database molecules that do not match the condition
Fj jL35

fi
�x � Fj jDfi� Fj jL35

fi
þx for all feature types fi. Here, D is the

CFM of the respective database molecule
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With regard to the process of similarity evaluation, the
CFM is related to the atom-pair descriptor. For both
descriptors, similarity evaluation is based on comparison
of substructures representing atom pairs and feature pairs,
respectively. However, in contrast to the CFM, the atom-
pair descriptor only correlates atom pairs that show
exactly the same interjacent distances. This is valid
because within that descriptor all atoms, and thus all
correlations between atoms, of a molecule are included.
In contrast to this, the CFM is not restricted to equal
distances of correlated feature pairs. This proves to be
advantageous in at least two aspects. On the one hand,
negligible features may be omitted. Therefore, the
comparison of two molecules takes significantly less
calculation steps than is the case with a descriptor that
uses all atoms for a proper description of the molecules.
On the other hand, Euclidean distances instead of
topological distances may be used, enabling similarity
evaluation on a three-dimensional level. The latter will be
the subject of further investigation.

Similarity evaluation based on the CFM model yielded
significant results, although the feature set used in this
work neither discriminates between aromatic and aliphat-
ic ring systems, nor is there an independent feature for
structures that may be either hydrogen-bond donors or
acceptors. Further investigation will be done to evaluate
the relevance of using varying feature sets. Another goal
is to automate the adjustment of the feature weights.

Supplementary material

The SDfiles of the three test data sets as well as the
complete evaluation results are available in the supple-
mentary material.
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